

Welcome to HPSSPy’s documentation!

Introduction

HPSSPy is a Python [https://www.python.org] package for interacting with the HPSS [https://www.nersc.gov/systems/hpss-data-archive/] tape storage
system at NERSC [https://www.nersc.gov]. It is currently being developed on GitHub [https://github.com/weaverba137/hpsspy].

Requirements

HPSSPy assumes that the HPSS utilities hsi and htar [https://docs.nersc.gov/filesystems/archive/#common-commands] are installed. As of
2023, these utilities are only available within the NERSC [https://www.nersc.gov] environment.

HPSSPy expects these utilities to exist in the directory ${HPSS_DIR}/bin, so
be sure the environment variable HPSS_DIR is defined.

Contents

	HPSSPy Configuration

	Using HPSSPy

	HPSSPy API

	Release Notes

Indices and tables

	Index

	Module Index

	Search Page

HPSSPy Configuration

Introduction

The primary HPSSPy command-line program missing_from_hpss is
configured with a JSON [http://json.org] file. Both the JSON standard and the
Python json [https://docs.python.org/3/library/json.html#module-json] library are very strict. There is a very quick way
to check the validity of JSON files however:

python -c 'import json; j = open("config.json"); data = json.load(j); j.close()'

where "config.json" should be replaced with the name of the file to be
tested.

The top-level JSON container should be an “object”, equivalent to a Python
dict [https://docs.python.org/3/library/stdtypes.html#dict]. The simplest possible file that satisfies this requirement
is:

{
}

Obviously, that’s not very much to go on. You will need further data
described below.

Metadata

The configuration file should contain a top-level keyword "__config__".
The value should itself be a dict [https://docs.python.org/3/library/stdtypes.html#dict], containing some important
metadata:

{
 "__config__": {
 "root": "/global/project/projectdirs/my_project",
 "hpss_root": "/nersc/projects/my_project",
 "physical_disks": ["my_project"]
 }
}

	root/
	The directory that contains all the data associated with the project.

	hpss_root/
	The path on the HPSS tape system that will contain the backups.

	physical_disks/
	If the data are spread across several physical disks and linked into
the root path via symlinks, the various physical disks need to be listed
here. If the value is equivalent to False, e.g.,
[null, false, []] this is means that the
"root" disk contains all the physical data. If the value of
is equivalent to a one-item list containing os.path.basename(root),
then this also means that the "root" disk contains all the physical
data. A list of simple names generates the physical disks by
substitution on the basename of the "root" value. More complicated
configurations are possible, see hpsspy.scan.physical_disks().

Sections

Inside the root directory, as described above, there may be several top-level
directories. For the purposes of this documentation, these are called
“sections” or “releases”. The terms are interchangeable. Each section
has configuration items that describe its structure:

{
 "__config__": {
 "root": "/projects/my_project",
 "hpss_root": "/hpss/projects/my_project",
 "physical_disks": ["my_project"]
 },
 "data": {
 "__exclude__": [],
 "d1": {
 "d1/batch/.*$": "d1/batch.tar",
 "d1/([^/]+\\.txt)$": "d1/\\1",
 "d1/templates/[^/]+$": "d1/templates/templates_files.tar"
 }
 }
}

The missing_from_hpss command works on one section at a time.
The name of the section is passed on the command-line:

missing_from_hpss config.json data

This would read the "data" section above.

Each section should have an "__exclude__" keyword, whose value is a list
of files to be ignored. In the example above, in order to ignore the file
/projects/my_project/data/d1/README.html, the "__exclude__" value
would be ["d1/README.html"]. Note that this is relative to the
path /projects/my_project/data, since "data" is the section being
processed. Generally, this should only be used for a handful of top-level
files, like README files. For more precise exclusion, see the "EXCLUDE"
statement below.

In the special case where a section contains only files, and no
subdirectories, the special pseudo-subdirectory "__top__" can be
used to contain the configuration.

Mapping File Names to HPSS Archives

Within a section, each immediate subdirectory should be described with
a keyword in the configuration file. missing_from_hpss will
complain if not, but it won’t necessarily cause it to fail. In the
example above, /projects/my_project/data/d1 is configured.

There are many possible ways to bundle files for archiving. Generally you
want to make archives as large as possible, without spilling onto multiple
tapes. However, with highly structured, deeply-nested directory structures,
this isn’t always the best way to do it from a data retrieval viewpoint.

Consider this scenario. /projects/my_project/data has been archived to
ten tape archives called data00.tar, data01.tar, … data09.tar.
The file /projects/my_project/data/d1/templates/d1_template_05.fits
needs to be recovered. Which tape archive contains it?

Now consider the scenario where the files in
/projects/my_project/data/d1/templates have been archived to
/hpss/projects/my_project/data/d1/templates/d1_templates_files.tar.
Now is it easier to recover the file?

One should still try to make archives as big as possible, but generally
speaking, long-term archiving of large, complex data sets should be
done by someone who actually knows the structure of the data set .

In coding terms we describe a portion of a directory tree hierarchy
using regular expressions to match files in that portion. Then we map
files that match that regular expression to tape archive files.

Finally, it should be noted that the configuration of each section is
organized by subdirectory in order to speed up the process of mapping files
to backup files. Instead of looking through every possible configuration
of files, only the configurations in a subdirectory need to be considered
when examining files in that subdirectory.

Regular Expression Details

The HPSSPy package, and missing_from_hpss will validate the
regular expressions used in the configuration file, in addition to checking
the overall validity of the JSON file itself. That is, a bad regular
expression will be rejected before it has any chance to “touch” any real data.

The regular expressions should follow Python’s conventions,
described in re [https://docs.python.org/3/library/re.html#module-re]. In addition to those conventions, this package
imposes some additional requirements, conventions and idioms:

	Requirements

	Backslashes must be escaped in JSON files. For example the
metacharacter (match a single decimal digit) \d becomes \\d.

	Regular expressions should end with the end-of-line marker $.

	Conventions

	Any archive file name ending in .tar is assumed to be an HTAR file,
and that command will be used to construct it.

	Any archive file not ending in .tar will simply be copied to
HPSS as is.

	The special string "EXCLUDE" can be used to prevent backups of
parts of a directory tree that might otherwise be archival. For example,
"d1/data/preproc/.*$" : "EXCLUDE" would prevent the preproc
directory from being backed up, even if other parts of d1/data
were configured for backup.

	The special string "AUTOMATED" behaves the same way as "EXCLUDE",
but is a human-readable way to denote data sets that are backed up by
automation independently of missing_from_hpss, as opposed
to not being backed up at all.

	When constructing an archive file, missing_from_hpss will
obtain the directory it needs to archive from the name of the archive
file, not the regular expression itself. This is because regular
expression substition is performed on the archive file name.
For example batch.tar means “archive a batch/ directory”.
For longer file names, any “prefix” of the file name will be stripped
off, and the “suffix” of the file will be used. For example,
d1/data_d1_batch.tar also means “archive a batch/ directory”, because
data_d1_ recognized as a prefix and stripped off. In particular,
this allows directory names to contain underscores.

	An archive filename that ends with _files.tar, e.g. foo/bar_files.tar
is a signal to missing_from_hpss to construct
the archive file in a certain way, not by descending into a directory,
but by constructing an explicit list of files and building an archive
file out of that.

	Idioms

	Archive the entire contents of a directory into a single file:
"foo/.*$" : "foo.tar".

	Archive several subdirectories of a directory, each into their own file:
"foo/(bar|baz|flub)/.*$" : "foo/foo_\\1.tar". The name of the
directory matched in parentheses will be substituted into the file name.

	Archive arbitrary subdirectories of a set of subdirectories:
"d1/foo/(ab|bc|cd|de|ef)/([^/]+)/.*$" : "d1/foo/\\1/d1_foo_\\1_\\2.tar"

	Match files in a directory, but not any files in any
subdirectory: "foo/[^/]+$" : "foo_files.tar". See also the
_files.tar convention mentioned above.

	Group some but not all subdirectories in a directory into a single
archive file for efficiency: "foo/([0-9])([0-9][0-9])/.*$" : "foo/foo_\\1XX.tar".
Note the ending of the archive file, and that the directories have to
have a very uniform naming convention (three and only three digits
in this example). Also, the placeholder X needs to be at the end of
the file name.

	Do not create an archive file, just copy the file, as is, to HPSS:
"d1/README\\.txt$" : "d1/README.txt". Similarly, for a set of TXT files:
"d1/([^/]+\\.txt)$" : "d1/\\1".

	An example with lots of substitutions:

"d1/foo/([0-9a-zA-Z_-]+)/sub-([0-9]+)/([0-9]+)/.*$" : "d1/foo/\\1/spectra-\\2/\\1_spectra-\\2_\\3.tar"

Finally, for truly monumentally-complicated directory trees, there is a
JSON file [https://github.com/weaverba137/hpsspy/blob/main/hpsspy/data/sdss.json] included with this distribution describing the SDSS [https://www.sdss.org] data tree
that can be used for examples. To view the equivalent files and directories
for section "dr12", for example, visit https://data.sdss.org/sas/dr12.

Using HPSSPy

Introduction

The primary command-line interface to HPSSPy is the script
missing_from_hpss, which is automatically generated by the
package install process. If you need to generate this script manually, it
is equivalent to:

#!/usr/bin/env python
from sys import exit
from hpsspy.scan import main
exit(main())

Options

There are several of command-line options. missing_from_hpss --help will
display all of them. Just the short versions of the commands are
shown here.

	-c DIR

	Cache files (described below) are written to
$HOME/cache by default. This option
allows the user to choose any directory.

	-D

	Delete and recreate the disk cache file
(described below).

	-E

	Exit if an error is detected while processing files
on disk or on HPSS.

	-H

	Delete and recreate the HPSS cache file
(described below).

	-l N

	Limit archive files to this size in GB.
The default is 1024 GB (1 TB).

	-p

	Issue the HPSS commands necessary to actually
back up the files found that need to be backed up.

	-r N

	Issue a progress report on how many files
have been analyzed after N files
(default 10,000).

	-t

	Test mode. Try not to make any changes.
Also pretend that there are no files backed up to HPSS.

	-v

	Print lots of extra information.

	--version

	Print a version string and exit.

Besides the options described above, missing_from_hpss requires
two positional arguments:

missing_from_hpss config.json section

The two arguements are the path to a configuration file and a section of that
file to process. These are extensively described in the
configuration document.

Cache Files

missing_from_hpss uses a few cache files primarily to reduce
memory footprint. These files will be stored in $HOME/cache
by default. The files are:

	Disk Cache
	A CSV file of the form disk_cache_<section>.csv, where <section> is
the section (as defined above) specified on the command-line. The
columns are file name, file size in bytes and modification time.

	HPSS Cache
	A CSV file of the form hpss_cache_<section>.csv, where <section> is
the section (as defined above) specified on the command-line. The
columns are file name, file size in bytes and modification time.

	Missing File Cache
	A JSON file of the form missing_files_<section>.json,
where <section> is the section (as defined above) specified on the
command-line. It contains a map of HPSS archive files to the files that
belong in that archive. In addition the size of the resulting files
(modulo small overheads from the archive file creation process) will
be saved to this file.

These files are not cleaned up by default because they are very useful
for debugging purposes.

Testing and Quality Assurance

To test a configuration file just run missing_from_hpss with the
--test option as described above. Aside from creating cache files in
a directory as described above, this mode will not alter any of the
data, neither on disk nor on HPSS.

In addition to validating JSON files and regular expressions, as
described in the configuration document,
missing_from_hpss will:

	Make sure all regular expressions are actually used.

	Make sure all files actually match one and only one regular expression.

	Create a manifest file containing the actual files on disk matched and
the archive file they map to. This is one and the same as the
“Missing File Cache” described above.

	Make sure that all archive file sizes are less than a user-defined limit
(default 1 TB), configurable on the command-line.

HPSSPy Library

For programmatic access to HPSS, the HPSSPy library provides
equvalents of os [https://docs.python.org/3/library/os.html#module-os] and os.path [https://docs.python.org/3/library/os.path.html#module-os.path] that operate on the HPSS filesystem.

HPSSPy API

hpsspy

Python interface to the HPSS system.

	
exception hpsspy.HpssError

	Generic exception class for HPSS Errors.

	
exception hpsspy.HpssOSError

	HPSS Errors that are similar to OSError.

hpsspy.os

Reproduces some features of the Python built-in os [https://docs.python.org/3/library/os.html#module-os].

	
hpsspy.os.chmod(path, mode)

	Reproduces the behavior of os.chmod() [https://docs.python.org/3/library/os.html#os.chmod] for HPSS files.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – File to chmod.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – Desired file permissions. This mode will be converted to a string.

	Raises:

	HpssOSError – If the underlying hsi reports an error.

	
hpsspy.os.listdir(path)

	List the contents of an HPSS directory, similar to os.listdir() [https://docs.python.org/3/library/os.html#os.listdir].

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory to examine.

	Returns:

	A list of HpssFile objects.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises:

	HpssOSError – If the underlying hsi reports an error.

	
hpsspy.os.lstat(path)

	Perform the equivalent of os.lstat() [https://docs.python.org/3/library/os.html#os.lstat] on the HPSS file path.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to file or directory.

	Returns:

	An object that contains information similar to the data returned by
os.stat() [https://docs.python.org/3/library/os.html#os.stat].

	Return type:

	HpssFile

	Raises:

	HpssOSError – If the underlying hsi reports an error.

	
hpsspy.os.makedirs(path, mode=None)

	Reproduces the behavior of os.makedirs() [https://docs.python.org/3/library/os.html#os.makedirs].

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory to create.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – String representation of the octal directory mode.

	Raises:

	HpssOSError – If the underlying hsi reports an error.

Notes

Unlike os.makedirs() [https://docs.python.org/3/library/os.html#os.makedirs], attempts to create existing directories raise
no exception.

	
hpsspy.os.mkdir(path, mode=None)

	Reproduces the behavior of os.mkdir() [https://docs.python.org/3/library/os.html#os.mkdir].

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory to create.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – String representation of the octal directory mode.

	Raises:

	HpssOSError – If the underlying hsi reports an error.

Notes

Unlike os.mkdir() [https://docs.python.org/3/library/os.html#os.mkdir], attempts to create existing directories raise no
exception.

	
hpsspy.os.stat(path, follow_symlinks=True)

	Perform the equivalent of os.stat() [https://docs.python.org/3/library/os.html#os.stat] on the HPSS file path.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to file or directory.

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, makes stat() behave like os.lstat() [https://docs.python.org/3/library/os.html#os.lstat].

	Returns:

	An object that contains information similar to the data returned by
os.stat() [https://docs.python.org/3/library/os.html#os.stat].

	Return type:

	HpssFile

	Raises:

	HpssOSError – If the underlying hsi ls reports an error.

	
hpsspy.os.walk(top, topdown=True, onerror=None, followlinks=False)

	Traverse a directory tree on HPSS, similar to os.walk() [https://docs.python.org/3/library/os.html#os.walk].

	Parameters:

	
	top (str [https://docs.python.org/3/library/stdtypes.html#str]) – Starting directory.

	topdown (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Direction to traverse the directory tree.

	onerror (callable, optional) – Call this function if an error is detected.

	followlinks (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True symlinks to directories are treated as directories.

	Returns:

	This function can be used in the same way as os.walk() [https://docs.python.org/3/library/os.html#os.walk].

	Return type:

	iterable

hpsspy.os.path

Reproduces some features of the Python built-in os.path [https://docs.python.org/3/library/os.path.html#module-os.path].

	
hpsspy.os.path.isdir(path)

	Reproduces the behavior of os.path.isdir() [https://docs.python.org/3/library/os.path.html#os.path.isdir] for HPSS files.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file.

	Returns:

	True if path is a directory.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hpsspy.os.path.isfile(path)

	Reproduces the behavior of os.path.isfile() [https://docs.python.org/3/library/os.path.html#os.path.isfile] for HPSS files.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file.

	Returns:

	True if path is a file.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hpsspy.os.path.islink(path)

	Reproduces the behavior of os.path.islink() [https://docs.python.org/3/library/os.path.html#os.path.islink] for HPSS files.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file.

	Returns:

	True if path is a symlink.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

hpsspy.scan

Functions for scanning directory trees to find files in need of backup.

	
hpsspy.scan._options()

	Parse command-line options.

	Returns:

	The parsed command-line arguments.

	Return type:

	argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	
hpsspy.scan.compile_map(old_map, section)

	Compile the regular expressions in a map.

	Parameters:

	
	old_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing regular expressions to compile.

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) – An initial key to determine the section of the dictionary of interest.
Typically, this will be a top-level directory.

	Returns:

	A new dictionary containing compiled regular expressions.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
hpsspy.scan.extract_directory_name(filename)

	Extract a directory name from a HTAR filename that may contain
various prefixes.

	Parameters:

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of HTAR file, including directory path.

	Returns:

	Name of a directory.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
hpsspy.scan.files_to_hpss(hpss_map_cache, section)

	Create a map of files on disk to HPSS files.

	Parameters:

	
	hpss_map_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – Data file containing the map.

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) – An initial key to determine the section of the dictionary of interest.
Typically, this will be a top-level directory.

	Returns:

	A tuple contiaining the compiled mapping and an additional
configuration dictionary.

	Return type:

	tuple()

	
hpsspy.scan.find_missing(hpss_map, hpss_files, disk_files_cache, missing_files, report=10000, limit=1024.0)

	Compare HPSS files to disk files.

	Parameters:

	
	hpss_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of file names to HPSS files.

	hpss_files (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The list of actual HPSS files.

	disk_files_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the disk cache file.

	missing_files (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the file that will contain the list of missing files.

	report (int [https://docs.python.org/3/library/functions.html#int], optional) – Print an informational message when N files have been scanned.

	limit (float [https://docs.python.org/3/library/functions.html#float], optional) – HPSS archive files should be smaller than this size (in GB).

	Returns:

	True if no serious problems were found.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hpsspy.scan.iterrsplit(s, c)

	Split string s on c and rejoin on c from the end of s.

	Parameters:

	
	s (str [https://docs.python.org/3/library/stdtypes.html#str]) – String to split

	c (str [https://docs.python.org/3/library/stdtypes.html#str]) – Split on this string.

	Returns:

	Iteratively return the joined parts of s.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
hpsspy.scan.main()

	Entry-point for command-line scripts.

	Returns:

	An integer suitable for passing to sys.exit() [https://docs.python.org/3/library/sys.html#sys.exit].

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
hpsspy.scan.physical_disks(release_root, config)

	Convert a root path into a list of physical disks containing data.

	Parameters:

	
	release_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The “official” path to the data.

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary containing path information.

	Returns:

	A tuple containing the physical disk paths.

	Return type:

	tuple()

	
hpsspy.scan.process_missing(missing_cache, disk_root, hpss_root, dirmode='2770', test=False)

	Convert missing files into HPSS commands.

	Parameters:

	
	missing_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a JSON file containing the missing file data.

	disk_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Missing files are relative to this root on disk.

	hpss_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Missing files are relative to this root on HPSS.

	dirmode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Create directories on HPSS with this mode (default drwxrws---).

	test (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Test mode. Try not to make any changes.

	
hpsspy.scan.scan_disk(disk_roots, disk_files_cache, overwrite=False)

	Scan a directory tree on disk and cache the files found there.

	Parameters:

	
	disk_roots (list [https://docs.python.org/3/library/stdtypes.html#list]) – Name(s) of a directory in which to start the scan.

	disk_files_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a file to hold the cache.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, ignore any existing cache files.

	Returns:

	Returns True if the cache is populated and ready to read.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
hpsspy.scan.scan_hpss(hpss_root, hpss_files_cache, overwrite=False)

	Scan a directory on HPSS and return the files found there.

	Parameters:

	
	hpss_root (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a directory in which to start the scan.

	hpss_files_cache (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a file to hold the cache.

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, ignore any existing cache files.

	Returns:

	The set of files found on HPSS, with size and modification time.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
hpsspy.scan.validate_configuration(config)

	Check the configuration file for validity.

	Parameters:

	config (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the configuration file.

	Returns:

	An integer suitable for passing to sys.exit() [https://docs.python.org/3/library/sys.html#sys.exit].

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

hpsspy.util

Low-level utilities.

	
class hpsspy.util.HpssFile(*args)

	This class is used to store and access an HPSS file’s metadata.

	Parameters:

	args (iterable) – This object this will normally be initialized by a tuple produced by
hpsspy.os.listdir().

	
hpss_path

	Path on the HPSS filesystem.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
raw_type

	Raw type string.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
raw_permission

	Raw permission string.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
st_nlink

	Number of hard links.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
st_uid

	Owner’s name.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
st_gid

	Group name.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
st_size

	File size in bytes.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
raw_dow

	Day-of-week of modification time.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
raw_month

	Month of modification time.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
raw_day

	Day of modification time.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
raw_hms

	H:M:S of modification time.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
raw_year

	Year of modification time.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
raw_name

	Name of file.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ishtar

	True if the file is an htar file.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
htar_contents()

	Return (and cache) the contents of an htar file.

	Returns:

	List containing the contents.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property isdir

	True if the file is a directory or a symbolic link that
points to a directory.

	
property islink

	True if the file is a symbolic link.

	
property name

	Name of the file.

	
property path

	Full path to the file.

	
property readlink

	Destination of symbolic link.

	
property st_mode

	File permission mode.

	
property st_mtime

	File modification time.

	
hpsspy.util.get_hpss_dir()

	Return the directory containing HPSS commands.

	Returns:

	Full path to the directory containing HPSS commands.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the HPSS_DIR environment variable has not been set.

	
hpsspy.util.get_tmpdir(**kwargs)

	Return the path to a suitable temporary directory.

Resolves the path to the temporary directory in the following order:

	If tmpdir is present as a keyword argument, the value is returned.

	If TMPDIR is set, its value is returned.

	If neither are set, /tmp is returned.

	Parameters:

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments from another function may be passed to this
function. If tmpdir is present as a key, its value will be
returned.

	Returns:

	The name of a temporary directory.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
hpsspy.util.hsi(*args, **kwargs)

	Run hsi with arguments.

	Parameters:

	
	args (tuple()) – Arguments to be passed to hsi.

	tmpdir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Write temporary files to this directory. Defaults to the value
returned by hpsspy.util.get_tmpdir(). This option must be
passed as a keyword!

	Returns:

	The standard output from hsi.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the HPSS_DIR environment variable has not been set.

	
hpsspy.util.htar(*args)

	Run htar with arguments.

	Parameters:

	args (tuple()) – Arguments to be passed to htar.

	Returns:

	The standard output and standard error from htar.

	Return type:

	tuple()

	Raises:

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If the HPSS_DIR environment variable has not been set.

Release Notes

0.7.1 (unreleased)

	No changes yet.

0.7.0 (2023-07-17)

	missing_from_hpss will proceed through all stages, even if
serious errors are detected, to facilitate batch processing. The older
behavior can be enabled with --exit-on-error (PR #15 [https://github.com/weaverba137/hpsspy/pull/15]).

	Fix error handling for a variety of corner cases (PR #15 [https://github.com/weaverba137/hpsspy/pull/15]).

	Increase test coverage to 100% (PR #15 [https://github.com/weaverba137/hpsspy/pull/15]).

0.6.1 (2022-05-20)

	Bumped version due to malformed PyPI upload.

0.6.0 (2022-05-20)

	Reorganization of package structure and metadata; no changes to user-facing API.

	Support full-precision timestamps on HPSS files (PR #14 [https://github.com/weaverba137/hpsspy/pull/14]).

0.5.1 (2019-08-20)

	Unused patterns and over-large backup files
no longer trigger a critical error (PR #12 [https://github.com/weaverba137/hpsspy/pull/12]).

0.5.0 (2019-05-18)

This release drops support for Python 2.

	Remove all Python 2 code (PR #8 [https://github.com/weaverba137/hpsspy/pull/8]).

	Support fine-grained exclusion in configuration files (PR #10 [https://github.com/weaverba137/hpsspy/pull/10]).

	Avoid commonly-used names for metadata in configuration files (PR #10 [https://github.com/weaverba137/hpsspy/pull/10]).

	Detect newer files on disk that map to older HPSS files (PR #10 [https://github.com/weaverba137/hpsspy/pull/10]).

	Allow top-level directories to contain only files (PR #10 [https://github.com/weaverba137/hpsspy/pull/10]).

0.4.2 (2019-01-29)

	Further fixes for mapping HTAR file names back to directories (PR #6 [https://github.com/weaverba137/hpsspy/pull/6]).

0.4.1 (2019-01-16)

	Handle directory names that contain underscore characters; improve test
coverage (PR #4 [https://github.com/weaverba137/hpsspy/pull/4]).

0.4.0 (2017-08-10)

	Add --version option.

	Add Python 3.6, remove 3.3.

	Add many quality-assurance checks and additional documentation (PR #2 [https://github.com/weaverba137/hpsspy/pull/2]).

0.3.0 (2017-01-18)

	General refresh of Python code, documentation, test suite. However,
no major changes to the API.

	Command-line inputs are no longer rigidly restricted to SDSS or DESI.

0.2.1 (2015-04-22)

	Fixed some setup.py errors, no code changes.

0.2.0 (2015-04-22)

	Moved configuration items to JSON files.

	Started adding support for DESI.

	Add tests to util subpackage.

	Add __future__ statements.

	Clean up API documentation.

	Minor bug fixes.

0.1.0 (2015-03-25)

	Initial release. Used to scan all SDSS data.

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 hpsspy	

 	
 	
 hpsspy.os	

 	
 	
 hpsspy.os.path	

 	
 	
 hpsspy.scan	

 	
 	
 hpsspy.util	

Index

 _
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	_options() (in module hpsspy.scan)

C

 	
 	chmod() (in module hpsspy.os)

 	
 	compile_map() (in module hpsspy.scan)

E

 	
 	
 environment variable

 	HPSS_DIR, [1], [2], [3]

 	TMPDIR

 	
 	extract_directory_name() (in module hpsspy.scan)

F

 	
 	files_to_hpss() (in module hpsspy.scan)

 	
 	find_missing() (in module hpsspy.scan)

G

 	
 	get_hpss_dir() (in module hpsspy.util)

 	
 	get_tmpdir() (in module hpsspy.util)

H

 	
 	HPSS_DIR, [1], [2], [3]

 	hpss_path (hpsspy.util.HpssFile attribute)

 	HpssError

 	HpssFile (class in hpsspy.util)

 	HpssOSError

 	
 hpsspy

 	module

 	
 hpsspy.os

 	module

 	
 	
 hpsspy.os.path

 	module

 	
 hpsspy.scan

 	module

 	
 hpsspy.util

 	module

 	hsi() (in module hpsspy.util)

 	htar() (in module hpsspy.util)

 	htar_contents() (hpsspy.util.HpssFile method)

I

 	
 	isdir (hpsspy.util.HpssFile property)

 	isdir() (in module hpsspy.os.path)

 	isfile() (in module hpsspy.os.path)

 	
 	ishtar (hpsspy.util.HpssFile attribute)

 	islink (hpsspy.util.HpssFile property)

 	islink() (in module hpsspy.os.path)

 	iterrsplit() (in module hpsspy.scan)

L

 	
 	listdir() (in module hpsspy.os)

 	
 	lstat() (in module hpsspy.os)

M

 	
 	main() (in module hpsspy.scan)

 	makedirs() (in module hpsspy.os)

 	mkdir() (in module hpsspy.os)

 	
 module

 	hpsspy

 	hpsspy.os

 	hpsspy.os.path

 	hpsspy.scan

 	hpsspy.util

N

 	
 	name (hpsspy.util.HpssFile property)

P

 	
 	path (hpsspy.util.HpssFile property)

 	
 	physical_disks() (in module hpsspy.scan)

 	process_missing() (in module hpsspy.scan)

R

 	
 	raw_day (hpsspy.util.HpssFile attribute)

 	raw_dow (hpsspy.util.HpssFile attribute)

 	raw_hms (hpsspy.util.HpssFile attribute)

 	raw_month (hpsspy.util.HpssFile attribute)

 	
 	raw_name (hpsspy.util.HpssFile attribute)

 	raw_permission (hpsspy.util.HpssFile attribute)

 	raw_type (hpsspy.util.HpssFile attribute)

 	raw_year (hpsspy.util.HpssFile attribute)

 	readlink (hpsspy.util.HpssFile property)

S

 	
 	scan_disk() (in module hpsspy.scan)

 	scan_hpss() (in module hpsspy.scan)

 	st_gid (hpsspy.util.HpssFile attribute)

 	st_mode (hpsspy.util.HpssFile property)

 	
 	st_mtime (hpsspy.util.HpssFile property)

 	st_nlink (hpsspy.util.HpssFile attribute)

 	st_size (hpsspy.util.HpssFile attribute)

 	st_uid (hpsspy.util.HpssFile attribute)

 	stat() (in module hpsspy.os)

T

 	
 	TMPDIR

V

 	
 	validate_configuration() (in module hpsspy.scan)

W

 	
 	walk() (in module hpsspy.os)

 nav.xhtml

 Table of Contents

 		
 Welcome to HPSSPy’s documentation!

 		
 HPSSPy Configuration

 		
 Introduction

 		
 Metadata

 		
 Sections

 		
 Mapping File Names to HPSS Archives

 		
 Regular Expression Details

 		
 Using HPSSPy

 		
 Introduction

 		
 Options

 		
 Cache Files

 		
 Testing and Quality Assurance

 		
 HPSSPy Library

 		
 HPSSPy API

 		
 hpsspy

 		
 HpssError

 		
 HpssOSError

 		
 hpsspy.os

 		
 chmod()

 		
 listdir()

 		
 lstat()

 		
 makedirs()

 		
 mkdir()

 		
 stat()

 		
 walk()

 		
 hpsspy.os.path

 		
 isdir()

 		
 isfile()

 		
 islink()

 		
 hpsspy.scan

 		
 _options()

 		
 compile_map()

 		
 extract_directory_name()

 		
 files_to_hpss()

 		
 find_missing()

 		
 iterrsplit()

 		
 main()

 		
 physical_disks()

 		
 process_missing()

 		
 scan_disk()

 		
 scan_hpss()

 		
 validate_configuration()

 		
 hpsspy.util

 		
 HpssFile

 		
 HpssFile.hpss_path

 		
 HpssFile.raw_type

 		
 HpssFile.raw_permission

 		
 HpssFile.st_nlink

 		
 HpssFile.st_uid

 		
 HpssFile.st_gid

 		
 HpssFile.st_size

 		
 HpssFile.raw_dow

 		
 HpssFile.raw_month

 		
 HpssFile.raw_day

 		
 HpssFile.raw_hms

 		
 HpssFile.raw_year

 		
 HpssFile.raw_name

 		
 HpssFile.ishtar

 		
 HpssFile.htar_contents()

 		
 HpssFile.isdir

 		
 HpssFile.islink

 		
 HpssFile.name

 		
 HpssFile.path

 		
 HpssFile.readlink

 		
 HpssFile.st_mode

 		
 HpssFile.st_mtime

 		
 get_hpss_dir()

 		
 get_tmpdir()

 		
 hsi()

 		
 htar()

 		
 Release Notes

 		
 0.7.1 (unreleased)

 		
 0.7.0 (2023-07-17)

 		
 0.6.1 (2022-05-20)

 		
 0.6.0 (2022-05-20)

 		
 0.5.1 (2019-08-20)

 		
 0.5.0 (2019-05-18)

 		
 0.4.2 (2019-01-29)

 		
 0.4.1 (2019-01-16)

 		
 0.4.0 (2017-08-10)

 		
 0.3.0 (2017-01-18)

 		
 0.2.1 (2015-04-22)

 		
 0.2.0 (2015-04-22)

 		
 0.1.0 (2015-03-25)

_static/minus.png

_static/plus.png

_static/file.png

